<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the rank of a number in a sample.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">RANK(Value; Data; Type)</p>
<p class="Paragraph"><span class="T1">Value</span> is the value, whose rank is to be determined.</p>
<p class="Paragraph"><span class="T1">Data</span> is the array or range of data in the sample.</p>
<p class="Paragraph"><span class="T1">Type</span> (optional) is the sequence order. = 0 means ascending, = 1 means descending.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=RANK(A10; A1:A50) returns the ranking of the value in A10 in value range A1:A50. If <span class="T1">Value</span> does not exist within the range an error message is displayed.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the skewness of a distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">SKEW(Number 1; number 2; ...number 30)</p>
<p class="Paragraph"><span class="T1">Number 1, number 2...number 30</span> <text:s text:c="" xmlns:text="http://openoffice.org/2000/text"/>are numerical arguments representing a sample of the distribution. They can also stand for ranges.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=SKEW(A1:A50) calculates the value of skew for the data referenced.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the inverse of the normal cumulative distribution.</help:help-text></p>
<p class="Paragraph"><span class="T1">Value</span> is the x value, for which the y value on the linear regression is to be returned.</p>
<p class="Paragraph"><span class="T1">Known_y's</span> is the array or range of known y's.</p>
<p class="Paragraph"><span class="T1">Known_x's</span> is the array or range of known x's.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=FORECAST(50; A1:A50; B1;B50) returns the Y value expected for the X value of -Value 50 if the X and Y values in both references are linked by a linear trend.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Estimates the standard deviation based on a sample.</help:help-text></p>
<p class="Paragraph"><span class="T1">Number 1,number 2,...number 30</span> are numerical arguments representing a sample based on an entire population.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=STDEV(A1:A50) returns the estimated standard deviation based on the data referenced.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Calculates the standard deviation of an estimation based on a sample. The value of text is 0.</help:help-text></p>
<p class="Paragraph"><span class="T1">Value 1,value 2,...value 30</span> are arguments representing a sample derived from an entire population. Texts are also possible and are considered to be 0.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=STDEVA(A1:A50) returns the estimated standard deviation based on the data referenced.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Calculates the standard deviation based on the entire population.</help:help-text></p>
<p class="Paragraph"><span class="T1">Number 1,number 2,...number 30</span> are numerical arguments representing a sample based on an entire population.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=STDEVP(A1:A50) returns a standard deviation of the data referenced.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Calculates the standard deviation based on the entire population. The value of text is 0.</help:help-text></p>
<p class="Paragraph"><span class="T1">Value 1,value 2,...value 30</span> are arguments representing a sample derived from an entire population. Text is considered to be 0.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=STDEVPA(A1:A50) returns the standard deviation of the data referenced.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Converts a random variable to a normalized value.</help:help-text></p>
<p class="Paragraph"><span class="T1">Number</span> is the value to be standardized.</p>
<p class="Paragraph"><span class="T1">MEAN</span> is the arithmetic mean of the distribution.</p>
<p class="Paragraph"><span class="T1">STD</span> is the standard deviation of the distribution.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=STANDARDIZATION(11; 10; 1) returns 1. The value 11 is in a normal distribution with a mean of 10 and a standard deviation of 1 provided this is around the mean of 10, like the value 1 around the mean 0 of the standard normal distribution.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the inverse of the standard normal cumulative distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">NORMINV(Number)</p>
<p class="Paragraph"><span class="T1">Number</span> is the probability to which the inverse standard normal distribution is calculated.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the normal cumulative distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">NORMSDIST(Number)</p>
<p class="Paragraph"><span class="T1">Number</span> is the value to which the standard normal distribution is calculated.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=NORMSDIST(1) returns 0.84. The area below the standard normal distribution curve to the left of X value 1 is 84% of the total area.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the slope of the linear regression line.</help:help-text> The slope is adapted to the data points set in the y and x values.</p>
<p class="Head3">Syntax</p>
<p class="Paragraph">SLOPE(Known y's; known x's)</p>
<p class="Paragraph"><span class="T1">Known y's</span> is the dependent array or range of data.</p>
<p class="Paragraph"><span class="T1">Known x's</span> is the dependent array or range of data.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the standard error of the predicted y value for each x in the regression.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">STEYX(known y's; known x's)</p>
<p class="Paragraph"><span class="T1">Known y's</span> is the dependent array or range of data.</p>
<p class="Paragraph"><span class="T1">Known x's</span> is the dependent array or range of data.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the sum of squares of deviations based on a sample mean.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">DEVSQ(Number 1; number 2; ...number 30)</p>
<p class="Paragraph"><span class="T1">Number 1,number 2,...number 30</span> numerical arguments representing a sample. They can also stand for references.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the inverse of the t-distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">TINV(Number; degrees of freedom)</p>
<p class="Paragraph"><span class="T1">Number</span> is the probability associated with the two-tailed t-distribution.</p>
<p class="Paragraph"><span class="T1">Degrees of freedom</span> is the number of degrees of freedom for the t-distribution.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the probability associated with a Student's t-Test.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">TTEST(Data 1; Data 2; Mode; Type)</p>
<p class="Paragraph"><span class="T1">Data 1</span> is the dependent array or range of data for the first record.</p>
<p class="Paragraph"><span class="T1">Data 2</span> is the dependent array or range of data for the second record.</p>
<p class="Paragraph"><span class="T1">Mode</span> = 1 calculates the one tailed test, <span class="T1">Mode</span> = 2 two- tailed distribution.</p>
<p class="Paragraph"><span class="T1">Type</span> is the kind of t-test to perform. Type 1 means paired. Type 2 means two samples, equal variance (homoscedastic). Type 3 means two samples, unequal variance (heteroscedastic).</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Estimates the variance based on a sample.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">VAR(Number 1; number 2; ...number 30)</p>
<p class="Paragraph"><span class="T1">Number 1,number 2,...number 30</span> are numerical arguments representing a sample based on an entire population. They can also stand for references.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Estimates a variance based on a sample. The value of text is 0.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">VARA(Value 1; value 2; ...value 30)</p>
<p class="Paragraph"><span class="T1">Value 1,value 2,...value 30</span> are arguments representing a sample derived from an entire population. They can also stand for references. Text is considered to be 0.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Calculates a variance based on the entire population.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">VARP(Number 1; number 2; ...number 30)</p>
<p class="Paragraph"><span class="T1">Number 1,number 2,...number 30</span> are numerical arguments representing an entire population.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Calculates the variance based on the entire population. The value of text is 0.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">VARA(Value 1; value 2; ...value 30)</p>
<p class="Paragraph"><span class="T1">Value 1,value 2,...value 30</span> are arguments representing an entire population.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the number of pemutations for a given number of objects.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">PERMUT(Number 1; Number 2)</p>
<p class="Paragraph"><span class="T1">Number 1</span> is the total number of objects.</p>
<p class="Paragraph"><span class="T1">Number 2</span> is the number of objects in each permutation.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=PERMUT(6; 3) returns 120. There are 120 different possibilities, to pick a sequence of 3 playing cards out of 6 playing cards.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the number of permutations for a given number of objects (repetition allowed).</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">PERMUTATIONA(Number 1; Number 2)</p>
<p class="Paragraph"><span class="T1">Number 1</span> is the total number of objects.</p>
<p class="Paragraph"><span class="T1">Number 2</span> is the number of objects in each permutation.</p>
<p class="Head3">Example</p>
<p class="Paragraph">How often can 2 objects be selected from a total of 11 objects?</p>
<p class="Paragraph">PERMUTATIONA(6; 3) returns 216. There are 216 different possibilities to put a sequence of 3 playing cards together out of six playing cards if every card is returned before the next one is drawn.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the probability that values in a range are between two limits.</help:help-text> If there is no CEILING, this function calculates the probability based on the principle that the data values are equal to the value of FLOOR.</p>
<p class="Paragraph"><span class="T1">Data</span> is the array or range of data in the sample.</p>
<p class="Paragraph"><span class="T1">Probabilities</span> is the array or range of the corresponding probabilities.</p>
<p class="Paragraph"><span class="T1">Beginning</span> is the beginning of the value interval whose probabilities are to be summed.</p>
<p class="Paragraph"><span class="T1">End</span> (optional) is the end of the value interval whose probabilities are to be summed. If this parameter is missing, the probability that this exact <span class="T1">Beginning</span> value exists is calculated.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=PROB(A1:A50; B1:B50; 50; 60) returns the probability with which a value within the range of A1:A50 is also within the limits between 50 and 60. Every value within the range of A1:A50 has a probability within the range of B1:B50.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the values of the Weibull distribution.</help:help-text></p>
<p class="Paragraph"><span class="T1">Number</span> is the value at which to calculate the Weibull-distribution.</p>
<p class="Paragraph"><span class="T1">Alpha</span>is the Alpha parameter of the Weibull-distribution.</p>
<p class="Paragraph"><span class="T1">Beta</span> is the Beta parameter of the Weibull-distribution.</p>
<p class="Paragraph"><span class="T1">K</span> indicates the type of function. If Cumulated equals 0 the form of the function is calculated, if Cumulated equals 1 the distribution is calculated.</p>